References

  1. Aktosun T., van der Mee C. Scattering and inverse scattering for the 1-D Schrödinger equation with energy-dependent potentials. J. Math. Phys. 1991, 32 (10), 2786-2801. doi: 10.1063/1.529070
  2. Guseinov G. Sh. Inverse spectral problems for a quadratic pencil of Sturm-Liouville operators on a finite interval. In: Spectral theory of operators and its applications, 7. "Élm", Baku, 1986, 51-101. (in Russian)
  3. Gasymov M.G., Guseinov G.S. Determination of a diffusion operator from spectral data. Akad. Nauk Azerbaidzhan. SSR Dokl. 1981, 37 (2), 19-23.
  4. Guseinov I.M., Nabiev I.M. An inverse spectral problem for pencils of differential operators. Mat. Sb. 2007, 198 (11), 47-66. doi: 10.1070/SM2007v198n11ABEH003897
  5. Hryniv R., Pronska N. Inverse spectral problems for energy-dependent Sturm-Liouville equation. Inverse Problems 2012, 28 (8), 085008(21pp.). doi: 10.1088/0266-5611/28/8/085008
  6. Hryniv R.O., Mykytyuk Y.V. On zeros of some entire functions. Trans. Amer. Math. Soc. 2009, 361 (4), 2207-2223. doi: 10.1090/S0002-9947-08-04714-4
  7. Jaulent M., Jean C. The inverse problem for the one-dimensional Schrödinger equation with an energy-dependent potential. I. Ann. Inst. H. Poincaré Sect. A (N.S.) 1976, 25 (2), 105-118.
  8. Kadec M.I. The exact value of the Paley-Wiener constant. Sov. Math. Dokl 1964, 5, 559-561.
  9. Kamimura Y. Energy dependent inverse scattering on the line. Differential Integral Equations 2008, 21 (11-12), 1083-1112.
  10. Maksudov F.G., Guseinov G.S. On the solution of the inverse scattering problem for a quadratic pencil of one-dimensional Schrödinger operators on the whole axis. Dokl. Akad. Nauk SSSR 1986, 289 (1), 42-46.
  11. Marchenko V. A. Sturm-Liouville Operators and Their Applications. Naukova Dumka Publ., 1977.
  12. van der Mee C., Pivovarchik V. Inverse scattering for a Schrödinger equation with energy dependent potential. J. Math. Phys. 2001, 42 (1), 158-181. doi: 10.1063/1.1326921
  13. Nabiev I.M. The inverse spectral problem for the diffusion operator on an interval. Mat. Fiz. Anal. Geom. 2004, 11 (3), 302-313.
  14. Nabiev I.M. An inverse quasiperiodic problem for a diffusion operator. Dokl. Akad. Nauk 2007, 415 (2), 168-170. doi: 10.1134/S1064562407040126
  15. Pronska N. Asymptotics of eigenvalues and eigenfunctions of energy-dependent Sturm-Liouville operators. Mat. Stud. 2013, 40 (1), 38-52.
  16. Pronska N. Spectral properties of Sturm-Liouville equations with singular energy-dependent potentials. Methods Funct. Anal. Topol. 2013, 19 (4), 327-345.
  17. Pronska N. Reconstruction of energy-dependent Sturm-Liouville operators from two spectra. Integral Equations and Operator Theory 2013, 76 (3), 403-419. doi: 10.1007/s00020-013-2035-7
  18. Sattinger D.H., Szmigielski J. Energy dependent scattering theory. Differential Integral Equations 1995, 8 (5), 945-959.
  19. Savchuk A.M., Shkalikov A.A. Sturm-Liouville operators with singular potentials. Mat. Zametki 1999, 66 (6), 897-912. doi: 10.1007/BF02674332
  20. Savchuk A.M., Shkalikov A.A. Sturm-Liouville operators with distribution potentials. Tr. Mosk. Mat. Obs. 2003, 64, 159-212.
  21. Tsutsumi M. On the inverse scattering problem for the one-dimensional Schrödinger equation with an energy dependent potential. J. Math. Anal. Appl. 1981, 83 (1), 316-350. doi: 10.1016/0022-247X(81)90266-3
  22. Yang C.-F., Guo Y.-X. Determination of a differential pencil from interior spectral data. J. Math. Anal. Appl. 2011, 375 (1), 284-293. doi: 10.1016/j.jmaa.2010.09.011.
  23. Young R.M. An Introduction to Nonharmonic Fourier Series. Academic Press, 2001.

Refbacks

  • There are currently no refbacks.


Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.