On an estimation of R-type of entire Dirichlet series and its exactness

T. Ya. Hlova, P. V. Filevych


Let $(\lambda_n)$ be a nonnegative sequence, increasing to $+\infty$, $\tau=\limsup\limits_{n\to\infty}\frac{\ln n}{\lambda_n}$, and $\rho$ be a positive number. It follows from a classical theorem of G. Valiron that for every Dirichlet series of the form $F(s)=\sum a_ne^{s\lambda_n}$ we have

$$\limsup_{\sigma\to+\infty}\frac{\ln \sup\{|F(s)|:\,\text{Re}\, s=\sigma\}}{e^{\rho\sigma}}\le e^{\rho\tau} \limsup_{n\to\infty}\frac{\lambda_n}{e\rho}|a_n|^\frac{\rho}{\lambda_n}.$$

The exactness of this estimation is proved in the paper.


entire Dirichlet series, maximum modulus, maximum term, R-type

Full Text: Article (Українська) References
3 :: 5


  • There are currently no refbacks.

Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.