1. Garsia L. A global conference theorem for aggregation algorithms. Optimation 1988, 19 (6), 819-829.
  2. He G., Fend H., Li C., Chen H. Parallel Sim Rank Computation on Lange Graphs with Aggregation. In: Proc. of the 16th ACM SIGKDD Intrern. Conf. KDD, 2010. New York, USA, 2010. 543-552. doi: 10.1145/1835804.1835874
  3. Hrobova T.A., Stetsenko V.Ya. Iterative aggregation methods for the approximate solution of linear and nonlinear algebraic systems and integral equations. Publ. House of Stavropol State Univ., Stavropol, 2003. (in Russian)
  4. Plyuta A.I., Stetsenko V.Ya. "Hybrid" of the methods of convergence of monotone approximations to the solution of the equation $x=Ax+b$ and of the one parametric iterative aggregation. In: Memoirs of the Stavropol State Univ., Physics and Mathematics. Stavropol, 2002.
  5. Krasnoselsky M.A., Lifshits E.A., Sobolev A.V. Positive linear system. Nauka, Moskov, 1985. (in Russian)
  6. Marec I., Mager P., Pultarova I. Conference issues in the theory and practice of iterative aggregation-disaggregation methods. Electron. Trans. Numer. Anal. 2009, 35, 185-200.
  7. Schweitzer P.I., Kindle K.W. An iterative aggregation-disaggregation algorithm solving linear equation. Appl. Math. Comput. 1986, 18 (4), 313-353. doi: 10.1016/0096-3003(86)90003-2
  8. Shuvar B.A., Kopach M.I. Modified iterative aggregation algorithms. Russian Mathematics (IZ VUZ) 2007, 3, 68-71.
  9. Shuvar B.A., Kopach M.I., Mentynskyi S.M., Obshta A.F. Bilateral approximate methods. Publ. House of Precarpathian Univ., Ivano-Frankivsk, 2007. (in Ukrainian)
  10. Shuvar B.A., Obshta A.F., Kopach M.I. Iterative aggregation for the nonlinear operator equations. Math. Bull. Shevchenko Sci. Soc. 2011, 8, 99-106. (in Ukrainian)
  11. Shuvar B.A., Obshta A.F., Kopach M.I. Decomposition of linear operator equations by iterative aggregation methods. Math. Bull. Shevchenko Sci. Soc. 2012, 9, 384-398. (in Ukrainian)
  12. Shuvar B.A., Obshta A.F., Kopach M.I. Aggregation-iterative analogues and generalization of the projection-iterative methods. Carpathian Math. Publ. 2013, 5 (1), 156-163. (in Ukrainian)
  13. Zhu Y., Ye S., Li X. Distributed PadeRang Compution Based on iterative Aggregation-Disaggregation Methods. In: Proc. of the 14th ACM Intern. Conf. on Information and knowledge management. Bremen, Germany, 2005, 578-585. doi: 10.1145/1099554.1099705


  • There are currently no refbacks.

Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.