The growth of entire functions in the terms of generalized orders

T. Ya. Hlova, P. V. Filevych


Let $\Phi$ be a convex function on $[x_0,+\infty)$ such that$\frac{\Phi(x)}x\to+\infty$, $x\to+\infty$, $f(z)=\sum_{n=0}^\infty a_nz^n$ — a transcendental entire function, let $M(r,f)$ be the maximum modulus of $f$ and let

$$\rho_\Phi(f)=\limsup_{r\to +\infty}\frac{\ln\ln M(r,f)}{\ln\Phi(\ln r)},\quad c_{\Phi}=\limsup_{x\to +\infty}\frac{\ln x}{\ln\Phi(x)},\quad d_{\Phi}=\limsup\limits_{x\to +\infty}\frac{\ln\ln\Phi'_+(x)}{\ln\Phi(x)}.$$

It is proved that for every transcendental entire function $f$ the generalized order $\rho_\Phi(f)$ is independent on the arguments of the coefficients $a_n$ (or defined by the sequence $(|a_n|)$) if and only if the inequality $d_{\Phi}\le c_{\Phi}$ holds.

Full Text: PDF (Українська)
3 :: 4


  • There are currently no refbacks.

Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.